

J١	Spectros	сору	υv	Spe	ctroscop	y
•	Introduc C. Obs 1.	tion erved electronic transitions The lowest energy transition (and most often obs. by UV) is typically that of an electron in the Highest Occupied Molecular Orbital (HOMO) to the Lowest Unoccupied Molecular Orbital (LUMO)	I.	Intr C.	oduction Observed 6. Hei	t re
	2.	For any bond (pair of electrons) in a molecule, the molecular orbitals are a mixture of the two contributing atomic orbitals; for every bonding orbital "created" from this mixing (σ , π), there is a corresponding antibonding orbital of symmetrically higher energy (σ^* , π^*)				
	3.	The lowest energy occupied orbitals are typically the $\sigma_{\!\!\!\!;}$ likewise, the corresponding anti-bonding σ^* orbital is of the highest energy			Ene	rg
	4.	$\pi\text{-orbitals}$ are of somewhat higher energy, and their complementary anti-bonding orbital somewhat lower in energy than $\sigma^*.$				
	5.	Unshared pairs lie at the energy of the original atomic orbital, most often this energy is higher than π or σ (since no bond is formed, there is no benefit in energy)				
		www.anilmishra.name 3				

UV	Spe	ctros	сору			
I.	Intr C.	oducti Obse 7.	ion rved electronic Although the in the atmosp	transitions UV spectrum extends t here is not transparent	pelow 100 n t below 200	m (high energy), oxygen nm
		8.	Special equip	ment to study vacuum	or <i>far UV</i> is	required
		9.	Routine organ	nic UV spectra are typic	ally collecte	d from 200-700 nm
		10.	This limits the	transitions that can be	e observed:	
			$\sigma \longrightarrow \sigma^{*}$	alkanes	150 nm	
			$\sigma \longrightarrow \pi^{*}$	carbonyls	170 nm	
			$\pi \longrightarrow \pi^*$	unsaturated cmpds.	180 nm	\checkmark - if conjugated!
			// → σ *	O, N, S, halogens	190 nm	
			$n \longrightarrow \pi^{\bullet}$	carbonyls	300 nm	√
				www.anilmishra.na	me	6

UV	Spec	tros	сору	
II.	Insti A.	ume Instr 3. 4.	ntation and Spectra umentation Two sources are required to scan the entire UV-VIS band: • Deuterium lamp – covers the UV – 200-330 • Tungsten lamp – covers 330-700 As with the dispersive IR, the lamps illuminate the entire band of U visible light; the monochromator (grating or prism) gradually cha the small hands of radiation sent to the hand solitizer.	JV or nges
		5.	The beam splitter sends a separate band to a cell containing sample solution and a reference solution	the
		6.	The detector measures the difference between the transmitted through the sample (<i>I</i>) vs. the incident light (I_0) and sends information to the recorder	light this
			www.anilmishra.name	10

υv	Spe	ctros	сору	
II.	Inst B.	trume Instr 1.	ntation and Spectra 'umentation – Sample Handling Virtually all UV spectra are recorded solution-phase	
		2.	Cells can be made of plastic, glass or quartz	
		3.	Only quartz is transparent in the full 200-700 nm range; plastic and are only suitable for visible spectra	glass
		4.	Concentration (we will cover shortly) is empirically determined	
		A ty	rpical sample cell (commonly called a <i>cuvet</i>):	
			www.animichra.namo	12

UV	Spectros	сору
II.	Instrume B. Inst 5.	entation and Spectra rumentation – Sample Handling Solvents must be transparent in the region to be observed; the wavelength where a solvent is no longer transparent is referred to as the cutoff
	6.	Since spectra are only obtained up to 200 nm, solvents typically only need to lack conjugated π systems or carbonyls Common solvents and cutoffs: acetonitrile 190 chloroform 240 cyclohexane 195 1,4-dioxane 215 95% ethanol 205 <i>n</i> -hexane 201 methanol 205 isooctane 195 water 190
		www.anilmishra.name

UV Spectroscopy	UV Spectroscopy
 II. Instrumentation and Spectra C. The Spectrum 1. The y-axis of the spectrum is in absorbance, A 	 II. Instrumentation and Spectra C. The Spectrum 4. These effects are combined into the Beer-Lambert Law: A = ε c I
2. From the spectrometers point of view, absorbance is the inverse of transmittance: $A = \log_{10} (I_0/I)$	 for most UV spectrometers, /would remain constant (standard cells are typically 1 cm in path length)
 From an experimental point of view, three other considerations must be made: a longer <i>path length</i>, / through the sample will cause more 	 ii. concentration is typically varied depending on the strength of absorption observed or expected – typically dilute – sub .001 M
UV light to be absorbed – linear effect	 iii. molar absorptivities vary by orders of magnitude: values of 10⁴-10⁶ 10⁴-10⁶ are termed <i>high intensity</i>
light will be absorbed – linear effect	 values of 10³-10⁴ are termed <i>low intensity absorptions</i> values of 0 to 10³ are the absorptions of <i>forbidden transitions</i>
iii. some electronic transitions are more effective at the absorption of photon than others - molar absorptivity, s this may vary by orders of magnitude	A is unitless, so the units for ${\scriptstyle \varepsilon}$ are cm $^{-1}$ \cdot M $^{-1}$ and are rarely expressed
	 Since path length and concentration effects can be easily factored out, absorbance simply becomes proportional to ε, and the y-axis is expressed as ε directly or as the logarithm of ε
www.anilmishra.name 15	16 www.anilmishra.name

UV	Spe	ctros	сору	
II.	Ins D.	trume Prac 1. 2. 3.	Intation and Spectra tical application of UV spectroscopy UV was the first organic spectral method, however, it is rarely used primary method for structure determination It is most useful in combination with NMR and IR data to elucidate electronic features that may be ambiguous in those methods It can be used to assay (via λ_{max} and molar absorptivity) the prope irradiation wavelengths for photochemical experiments, or the desi UV resistant paints and coatings The most ubiquitous use of UV is as a detection device for HPLC; s	as a unique r gn of ince
			UV is utilized for solution phase samples vs. a reference solvent thi easily incorporated into LC design www.anilmishra.name	s is 18

UV Spectroscopy

III. Chromophores A. Definition

- Remember the electrons present in organic molecules are involved in covalent bonds or lone pairs of electrons on atoms such as O or N
- Since similar functional groups will have electrons capable of discrete classes of transitions, the characteristic energy of these energies is more representative of the functional group than the electrons themselves
- 3. A functional group capable of having characteristic electronic transitions is called a chromophore (*color loving*)
- 4. Structural or electronic changes in the chromophore can be quantified and used to predict shifts in the observed electronic transitions

www.anilmishra.name

20

 UV Spectroscopy

 III. Chromophores

 8. Organic Chromophores

 1. Alkanes – only posses σ -bonds and no lone pairs of electrons, so only the high energy $\sigma \rightarrow \sigma^*$ transition is observed in the far UV

 This transition is destructive to the molecule, causing cleavage of the σ -bond

 Of σ^* (σ^*) (σ^*) (σ^*) (σ^*) (σ^*)

 Upper colspan="2">Value of the molecule, causing cleavage of the σ -bond

UV Spectros	сору	
III. Chromop B. Org 4.	whores anic Chromophores Carbonyls – unsaturated systems incorporating N or O can undergo $n \rightarrow \pi^*$ transitions (~285 nm) in addition to $\pi \rightarrow \pi^*$ Despite the fact this transition is forbidden by the selection rules ($\varepsilon =$ 15), it is the most often observed and studied transition for carbonyls This transition is also sensitive to substituents on the carbonyl Similar to alkenes and alkynes, non-substituted carbonyls undergo the $\pi \rightarrow \pi^*$ transition in the vacuum UV (188 nm, $\varepsilon =$ 900); sensitive to substitution effects	2
	www.anilmishra.name	ł

UV Spectroscopy

CHROMOPHORE

This is defined as any isolated covalently bonded group that shows a characteristic absorption in the UV or visible region

Chromophore	Example	Ex	cit	ation	λmax nm	ε molar absorptivity	solvent
C=C	Ethene	π	>	π*	171	15,000	Hexane
C≡C	1-Hexyne	π	>	π*	180	10,000	Hexane
C=O	Ethanal	n π	> >	π* π*	290 180	15 10,000	hexane Hexane
N=O	Nitromethane	n π	>	π* π*	275 200	17 5,000	ethanol Ethanol
C-X X = Br, I	Methyl bromide Methyl Iodide	n n	> >	σ* σ*	205 255	200 360	hexane hexane

UV Spectroscopy	UV Spectroscopy
 III. Chromophores C. Substituent Effects General – from our brief study of these general chromophores, only the weak n → π* transition occurs in the routinely observed UV The attachment of substituent groups (other than H) can shift the energy of the transition Substituents that increase the intensity and often wavelength of an absorption are called <i>auxochromes</i> Common auxochromes include alkyl, hydroxyl, alkoxy and amino groups and the halogens <i>Auxochrome is a functional group that does not absorb in UV region but has the effect of shifting chromophore peaks to longer wavelength as well As increasing their intensity.</i> 	 An auxochrome is defined as any group which does not itself act as a chromophore but whose presence brings about a shift of the absorption band towards the red end of the spectrum. Some common auxochromic groups are – –OH, -OR, -NH2, -NHR, -NR2, -SH
www.anilmishra.name 27	28

UV Spectro	scopy		UV Spectroscopy	
IV. Structur A. Die 2.	e Determination nes Woodward-Fieser Rules Woodward and the Fiesers performed extensive studies of terpene and steroidal alkenes and noted similar substituents and structural features would predictably lead to an empirical prediction of the wavelength for the lowest energy $\pi \rightarrow \pi^*$ electronic transition This work was distilled by Scott in 1964 into an extensive treatise on the Woodward-Fieser rules in combination with comprehensive tables and overpredict Laterativity of the Uttraviolate Scotta of Uttraviol	,	Woodward-Fieser Rules Woodward formulated certain empirical ru case of dienes. Fieser later modified the r each type of diene has a certain fixed ba absorption (Amax depends upon 1. The number of alkyl substituents or ring r 2. The number of double bonds which exten 3. The presence of polar groups such as -Ci	les for calculating the Amax in ules. According to these rules, sic value and the value of the esidues on the double bond. d conjugation ', -Br, -OR, -SR etc.
	Products Dergamen NV 1064)		Transition Involved π-π-	Absorption
	Products, Pergamon, NT, 1904)		Parent value for Butadiene or a cyclic conjugated diene	217mµ
			Increment for each substituent	
	A more modern interpretation was compiled by Rao in 1975 – (C.N.R.		Alkyl Substituent or ring residue	5 mµ
	Rao, Ultraviolet and Visible Spectroscopy, 3rd Ed., Butterworths, London,		Exocyclic double bonds	5 mµ
	1975)		Double bond extended conjugation	30 mµ
	1575)		Auxochrome	
			-OR	+6 mµ
			-SR	+30 mµ
			-Cl, -Br	+5 mµ
			-NR2	+60 mµ
			OCOCH ₃	0
	www.anilmishra.name 39		www.anilmishra.n	ame 40

IV. St	ructure	Determination		
А.	2	Woodward-Fieser Rules - Diene	ac a	
		The rules begin with a base val observed:	lue for λ_{max} of the chron	nophore being
		acyclic bu	itadiene = 217 nm	
		The incremental contribution of	f substituents is added t	to this base value
		The incremental contribution of from the group tables:	f substituents is added t	to this base value
		The incremental contribution of from the group tables: Group Extended conjugation	f substituents is added t	to this base value
		The incremental contribution of from the group tables: Group Extended conjugation Each exo-cyclic C=C	f substituents is added t Increment +30 +5	to this base value
		The incremental contribution of from the group tables: Group Extended conjugation Each exo-cyclic C=C Alkyl	f substituents is added t Increment +30 +5 +5	to this base value
		The incremental contribution of from the group tables: Group Extended conjugation Each exo-cyclic C=C Alkyl -OCOCH ₃	f substituents is added t Increment +30 +5 +5 +0	to this base value
		The incremental contribution of from the group tables: Group Extended conjugation Each exo-cyclic C=C Alkyl -OCOCH ₃ -OR	f substituents is added t Increment +30 +5 +5 +0 +6	to this base value
		The incremental contribution of from the group tables: Group Extended conjugation Each exo-cyclic C=C Alkyl -OCOCH ₃ -OR -SR	f substituents is added f Increment +30 +5 +5 +0 +6 +30	to this base value
		The incremental contribution of from the group tables: Group Extended conjugation Each exo-cyclic C=C Alkyl -OCOCH ₃ -OR -SR -Cl, -Br	f substituents is added f Increment +30 +5 +5 +0 +6 +30 +5	to this base value

Lecture notes of Prof. Anil Mishra from www.anilmishra.name

40

UV Spectroscopy				
IV. Structure Determina B. Enones	ation			
 General F For auxoo shifts are 	General Features For auxochromic substitution on the carbonyl, pronounced hypsochromic shifts are observed for the $n \rightarrow \pi^*$ transition (λ_{max}):			
Д	293 nm	This is explained by the inductive withdrawal of electrons by O, N or halogen from the		
CH3	279	carbonyl carbon – this causes the <i>n</i> -electrons on the carbonyl oxygen to be held more firmly		
o	235	It is important to note this is different from the auxochromic effect on $\pi \rightarrow \pi^*$ which		
O NH ₂	214	extends conjugation and causes a bathochromic shift		
° Lo	204	In most cases, this bathochromic shift is not enough to bring the $\pi \rightarrow \pi^*$ transition into		
Он	204	the observed range 47		

UVS	Spe	ctros	сору		
IV.	Stru B.	cture Enor 1.	Determinat hes General Fe Conversely bands are Here, seve i. ii. ii. For these r enones are	ion atures i, if the C=O system is conjugated both the $n \rightarrow \pi^*$ and bathochromically shifted ral effects must be noted: the effect is more pronounced for $\pi \rightarrow \pi^*$ if the conjugated chain is long enough, the much higher intensity $\pi \rightarrow \pi^*$ band will overlap and drown out the <i>n</i> band the shift of the $n \rightarrow \pi^*$ transition is not as predictable easons, empirical Woodward-Fieser rules for conjugated for the higher intensity, allowed $\pi \rightarrow \pi^*$ transition	$\pi \rightarrow \pi^*$ $\gamma \rightarrow \pi^*$
				www.anilmishra.name	48

UV Spectroscopy				
IV. Structure Determination B. Enones 2. Woodward-Fieser Rules - Enones	$\beta - c = c - c$	$\delta_{-C=C-C=C-C}^{\delta}$		
Group		Increment		
6-membered ring or acyclic enone		Base 215 nm		
5-membered ring parent enone		Base 202 nm		
Acyclic dienone		Base 245 nm		
Double bond extending conjugation		30		
Alkyl group or ring residue	α, β, γ and higher	10, 12, 18		
-OH	α, β, γ and higher	35, 30, 18		
-OR	α, β, γ, δ	35, 30, 17, 31		
-O(C=O)R	α, β, δ	6		
-Cl	α, β	15, 12		
-Br	α, β	25, 30		
-NR ₂	β	95		
Exocyclic double bond		5		
Homocyclic diene component		39		
www.anilmishra.r	iame	51		

UV Spectroscopy					
IV.	Structure Determination B. Enones 2. Woodward-Fieser Rules - Enones Aldehydes, esters and carboxylic acids have different base values than ketones				
				Unsaturated system	Base Value
				Aldehyde	208
				With α or β alkyl groups	220
				With α,β or β,β alkyl groups	230
				With α,β,β alkyl groups	242
				Acid or ester	
				With α or β alkyl groups	208
				With α,β or β,β alkyl groups	217
				Group value – exocyclic $\alpha,\!\beta$ double bond	+5
				Group value – endocyclic α,β bond in 5 or 7 membered ring	+5
				www.anilmishra.name	52

IV. Str B.	ucture Determination Enones 2. Woodward-Fieser Rules - Unlike conjugated alkene	Enones s, solvent does have an effect on 7	max		
These effects are also described by the Woodward-Fieser rules					
	Solvent correction	Increment			
	Water	+8			
	Ethanol, methanol	0			
	Chloroform	-1			
	Dioxane	-5			
	Ether	-7			
	Hydrocarbon	-11			

