Heterocyclic Compounds

- **Definition:** Heterocyclic compounds are organic compounds that contain a ring structure containing atoms in addition to carbon, such as sulfur, oxygen or nitrogen, as the heteroatom. The ring may be aromatic or non-aromatic.

Five-Membered Heterocycles

- Pyrrole, furan, and thiophene are common five-membered unsaturated heterocycles.
- Each has two double bonds and N, O, or S.

Aromatic Heterocycles

- Aromatic heterocyclic compounds are those having a heteroatom in a ring and behave in a manner similar to benzene in some of their properties (i.e. react by electrophilic aromatic substitution).
- Further, these compounds comply with the general rule proposed by Hückel.

Heterocycles

- Cyclic organic compounds are carbocycles or heterocycles.
 - Carbocycle rings contain only carbon atoms.
 - Heterocycle rings contain atoms in addition to carbon (N, S, O are common).
- Heterocycles include many important natural materials as well as pharmaceuticals.

Five-Membered Heterocycles

- The main reason for the study of pyrrole came from the work on the structure of haem; the blood respiratory pigment, and the chlorophyll; the green photosynthetic pigment of plants.
- Thiophene does occur in plants in association with polyacetylenes with which they are biogenetically closely linked.
- Furan occurs widely in secondary plant metabolites, especially in terpenoids.
- Unsubstituted pyrrole, furan, and thiophene are usually obtained from petroleum.

Aromatic Heterocycles

- Erich Hückel, a German physical chemist, recognized in the early 1930s through MO calculations that cyclic planar molecules with a closed loop of 2,6,10,14,18,22......π-electrons in a fully conjugated system should be aromatic.
- This finding is called the (4n+2) π-electron rule. Conversely, monocyclic planar molecules with 4n π-electrons are said to be antiaromatic.
Aromaticity

- For a molecule to be aromatic it must:
 - Be cyclic
 - Have a p-orbital on every atom in ring
 - Be planar
 - Possess 4n+2 p electrons (n = any integer)

Structures of Pyrrole, Furan, and Thiophene

- Pyrrole, furan, and thiophene are aromatic (Six π electrons in a cyclic conjugated system of overlapping p orbitals)
- In pyrrole π electrons come from C atoms and lone pair on sp2N

Structure and Aromaticity

- Pyrrole, furan, and thiophene are aromatic because:
 - 1) they fulfill the criteria for aromaticity, the extent of delocalization of the nonbonding electron pair is decisive for the aromaticity,
 - thus the grading of aromaticity is in the order of: furan < pyrrole < thiophene < benzene
 - this order is consistent with the order of electronegativity values for oxygen (3.44), nitrogen (3.04) and thiophene (2.56).

Structures of Pyrrole, Furan, and Thiophene

- However, the extent of aromaticity (as determined by resonance energies, see below) for these compounds is different from that of benzene (which undergoes electrophilic substitution reactions).
 - Resonance Energies (experimental and theoretical values):
 - Furan 88 KJmol$^{-1}$
 - Pyrrole 100 KJmol$^{-1}$
 - Thiophene 130 KJmol$^{-1}$
 - Benzene 151 KJmol$^{-1}$
 - Thus the order of aromatic character of these three heterocycles is as follows:
 - Thiophene > pyrrole > Furan
 - This order is consistent with the order of the electronegativity values

Structure and Aromaticity

2) They tend to react by electrophilic substitution due appearance of –ve charge on carbon atoms due to delocalization as shown in the following resonance structures

- As O is more electronegative than N and S, it provides the two electron necessary for the aromatic sextet less easily, and in consequence furan is less aromatic than pyrrole and thiophene
 - Element O N S
 - Electron negativity 3.44 3.04 2.58
 - For the same reason pyrrole is less aromatic than thiophene which resonance energy is higher than that of furan and pyrrole and about the same as in benzene.
 - Therefore thiophene resemble benzene rather than furan or pyrrole in many of its reactions but it is more reactive and less stable.
Pyrrole

- Commercially from coal tar or by treatment of furan with ammonia over an alumina catalyst at 400°C.

General Characteristics

- Pyrrole, furan and thiophene are colorless liquids of boiling points 126°, 32°, and 84° respectively.
- Pyrrole has a relatively high boiling point as compared to furan and thiophene, this is due to the presence of intermolecular hydrogen bonding in pyrrole.

Synthesis of Pyrrole

1) From 1,4-dicarbonyl compounds (Paal-Knorr Synthesis)

Generally Substituted pyrrole may be synthesized through the cyclization of 1,4-diketones in combination with ammonia (NH₃) or amines. The ring-closure is proceeded by dehydration (condensation), which then yields the two double bonds and thus the aromatic π system. The formation of the energetically favored aromatic system is one of the driving forces of the reaction.

\[\text{1,4-Dicarbonyl compound} \xrightarrow{\Delta} \text{Pyrrole} \]

2) Pyrrole is obtained by distillation of succinimide over zinc dust.

\[\text{NH}_2\text{COCONH}_2 + \text{Zn, heat} \rightarrow \text{N}_2 + \text{NH}_3 + 2\text{H}_2\text{O} \]

3) By heating a mixture of furan, ammonia and steam over alumina catalyst

\[\text{Furan} + \text{NH}_3 + \text{steam, Al}_2\text{O}_3 \rightarrow \text{Pyrrole} \]

4) By passing a mixture of acetylene and ammonia over red hot tube.

\[\text{CH} = \text{CH} + \text{NH}_3 \xrightarrow{\text{red hot tube}} \text{Pyrrole} \]
Synthesis of Pyrrole

5) Knorr-pyrrole synthesis:
This involves the condensation of α-amino ketones with a β-diketone or a β-ketoester to give a substituted pyrrole.

\[R' = \text{COR}; \quad \beta-\text{diketone} \]
\[= \text{COOC}(\text{H}_2\text{R})\beta-\text{ester} \]

Acidic Properties of Pyrrole

- Due to participation of N lone pair in aromaticity, pyrrole has exceptionally strong acidic properties for a secondary amine for instance it can react with strong bases or Grignard reagent or potassium metal in inert solvents, and with sodium amide in liquid ammonia, to give salt-like compounds which can be used to alkylate or acylate the nitrogen atom as shown below:

Sensitivity of Pyrrole to acids

- Pyrrole is sensitive to strong acids.
- This is due to protonation occurs at one of C-3 and the resulting protonated molecule will add to another unprotonated pyrrole molecule this continues to give pyrrole trimer.
- This reaction is considered as electrophilic addition to pyrrole

Electrophilic Substitutions

- As expected for an aromatic compound, pyrrole can react by electrophilic substitution.
- In comparison to benzene pyrrole is more reactive thus the substitution is easier and milder reagents can be used.
- The increased reactivity is a result of resonance which pushes the electrons from the N-atom into the ring making the c-atoms of pyrrole ring more electron rich than in case of benzene. In fact pyrrole resembles most reactive benzene derivatives (phenols and amines)
- Consequently, there are some modifications in usual electrophilic reagents, for instance, sulphonating and nitrating reagents have been modified to avoid the use of strong acids (induce polymerization). Also reaction with halogens requires no Lewis acid.
Electrophilic Substitutions

\[
\text{PCl}_3, \text{AlCl}_3 \rightarrow \text{Furans}
\]

Vilsmeier Reaction

\[
\text{Ac}_2\text{O}, \text{AlCl}_3 \rightarrow \text{Furans}
\]

Electrophilic Substitution Reactions of Pyrrole

\[
\text{ZnCl}_2, \text{MeSOCl}_2 \rightarrow \text{Furans}
\]

Electrophilic Substitutions

Normal acidic nitration causes polymerization

Vilsmeier Reaction

Electron-withdrawing group allows substitution at the 3-position

Other Five Membered Heterocycles

Pyrrole

Thiophene

Furan

The least reactive

More reactive than Furan

Less reactive than pyrrole, but substitution always at 3-position

Electrophilic Substitution, not addition

Thiophene has similar reactivity to benzene

Furan

• Made commercially by extrusion of CO from furfural, which is produced from sugars

\[
\text{C}_5\text{H}_4\text{O} + \text{H}_2\text{O} \rightarrow \text{Furan}
\]

Synthesis of Furan

• Paal Knorr Synthesis
 - The acid catalyzed furan synthesis proceeds by protonation of one carbonyl which is attacked by the forming enol of the other carbonyl. Dehydration of the hemiacetal gives the resultant furan.

Synergy of Furan

• The reaction is usually reversible and can be used to convert furans into 1,4-diketones
• A trace of acid is required – usually TsOH (p-ClC_6H_4SO_2H)
Synthesis of Furan

- Furst-Benary Synthesis (3+2)
- The product prior to dehydration can be isolated under certain circumstances
- Reaction can be tuned by changing the reaction conditions

Synthesis of Furan

- Iodide is a better leaving group than Cl and the carbon becomes more electrophilic
- The Pasto-Knorr sequence is followed by the 1,4-diketoins onwards
- The regiochemical outcome of the reaction is completely altered by addition of iodide

Reactions of Furan

- Furan is more reactive than thiophene
- Wittig reaction
- Addition product
- Furan is easily cleaved to dicarbonyls
- Hydrolysis of acetal

Reactions of Furan

- Furan is a source of 1,4-dicarbonyls in Organic Synthesis
- Acetaldehyde + 2 x alcohol
- Acid-catalysed
- cis-butenediol (too unstable to isolate)

Reactions of Furan

- Friedel-Crafts Acylation of Furan
- Bromination of Furan
- N-Augen and high temperatures required to give β acylation

Reactions of Furan

- Mannich Reaction of Furan
- Bronsted acidity of Furan
- Reaction can occur by an addition-elimination process
- When NO_2SO_3 is used as a modifying agent, the reaction follows usual mechanism
- Furan is easily cleaved to dicarbonyls
- Furan readily undergoes with Br_2 in CCl_4 at room temp. to give polyhalogenated products
- It is possible to obtain 2-nitrofuran by careful control of temperature
Diels Alder Reaction

- **Dienophile**:
 - Electron rich
 - Electron poor

- **Diene**:
 - Benzene
 - π system

- **Cycloaddition**:
 - Electron rich + Electron poor
 - cis-diene

Diels Alder Reaction

- **Endo-product**
 - Thermodynamic products form as the temperature is raised

Reactions of Furan

- **1. HCN, HCl**
- **2. H$_2$O**
- **Br$_2$**
- **dioxane**
- **HgCl**
- **HgCl$_2$**
- **CH$_3$CO$_2$Na**
- **I$_2$**
- **CH$_3$CO$_2$Cl**

Thiophene

- From coal tar or by cyclization of butane or butadiene with sulfur at 600°C

Furan readily undergoes the Diels-Alder reaction with maleic anhydride.

Aromaticity prevents thiophene from taking part in the Diels-Alder reaction.

This sulfone is not aromatic & very reactive.
Synthesis of Thiophene

- Paal Knorr Synthesis
 - Thiophene synthesis is achieved via a mechanism very similar to the furan synthesis. The initial diketone is converted to a thioketone with a sulfurizing agent, which then undergoes the same mechanism as the furan synthesis.

Electrophilic Substitutions

Avoid concentrated mineral acids or strong Lewis acids, e.g. AlCl₃

Reactions of Thiophene

- Less reactive, can use acids
- Reagent AcONO₂ generated in situ from c-HNO₃ and Ac₂O
- Occurs readily at room temperature and even at -30 °C
- Careful control or reaction conditions is required to ensure mono-bromination