Spin trapping

- Spin trapping is a technique employed in the study of free radicals that are either unstable or terminate rapidly at ambient temperatures.
- Spin trapping involves the addition of a diamagnetic radical scavenger (the spin trap) to a reaction mixture containing a radical or radicals of interest.
- A reactive free radical adds to the scavenger, forming a long-lived paramagnetic adduct.
- This product can then be studied by EPR spectroscopy and the identity of the species adducted can be inferred from EPR spectral characteristics

 such as an observed gvalue or a hyperfine-coupling pattern.

Selection of the Spin Trap

- · Stable and easy to purify
- · Radical adduct is persistent
- · Radical adducts present distinctive EPR spectra
- · EPR spectra is simple

Nitrone spin traps

- Nitrone spin traps, especially DMPO
 - Adducts can interconvert
 - i.e., DMPO/·OOH decays to form DMPO/·OH
 - Subject to <u>rare</u> nucleophilic addition across their double bonds
 - Yields an EPR silent hydroxylamine which can be facilely oxidized up to the nitroxide

Advantage of the Nitrones

- React with a variety of different free radicals to form nitroxide adducts
 - RC[•], RO[•], RS[•], in some cases RN[•]
- Adducts are often quite stable
- Not terribly toxic so amenable to *in vivo/ex vivo* spin trapping

The Problem

 Although there are a majority of x-ray crystallographic results published which give insight into the three-dimensional structure of a protein, it is evident that techniques must be established that will correlate structure and dynamics directly to function.

Analysis of Proteins

The Technique

- Currently, two experimental techniques work cooperatively to give the desired information on large amplitude motions in proteins
- Site Directed Spin-Labeling (SDSL) followed by
- Electron Spin Resonance (ESR)

Paramagnetism is essential

-When using ESR to perform analysis the sample must be paramagnetic.

-Stable proteins are not paramagnetic.

How is this problem fixed?

-A paramagnetic Nitroxide "spin-label" is introduced into the protein through site directed mutagenesis, in this way ESR can detect signals from the nitroxide and distance information can be extracted

Analysis of Proteins

Site Directed Spin Labeling

- · Once the nitroxide has been introduced to the system, ESR analysis can be performed.
- Often, two nitroxide spin labels are attached at different sites in the protein to obtain distance measurements with the ESR.

Can we use EPR to measure free radicals from biological systems?

(in vivo or ex vivo)

Yes! Radicals from intact tissues, organs or whole-body can be measured.

But there is a catch! Biological samples are aqueous and undergo 'non-resonant' absorption of microwave energy (microwave cooking!) and hence poor penetration depth.

The frequency of the instrumentation is reduced to overcome this problem! What is the optimum frequency? - depends on sample size

Frequency	~300 MHz	-750 MHz	1-2 GHz	~3 GHz	<u>9-10 GHz</u>
Penetration Depth	> 10 cm	6-8 cm	1-1.5 cm	1-3 mm	1 mm
Objects studied	Mouse, rat	Mouse	Mouse, rat heart	Mouse tail Topical (skin)	In vitro samples (~100 uL vol.)

What else can we do with EPR?

Instead of "spying on free radicals", we can use free radicals as "spying probes" to obtain functional information from biological systems

- · A known free radical probe is infused or injected into the animal
- The change in the EPR line-shape profile, which is correlated to some physiological function, is then monitored.
- The measurements can be performed in realtime and in vivo to obtain 'functional information'.

Summary

- The main feature of EPR spectra that is useful for assignment to a particular free radical structure is hyperfine splitting •
- Direct EPR spectra can provide a wealth of structural information ٠
- Highly unstable free radicals can, in many cases, be stabilized for EPR characterization by spin trapping
 The increased stability of the <u>detected</u> free radical comes with a loss of structural information

 - The adduct may undergo chemistry between formation and detection
 Adduct assignment is assisted by selective isotope labeling and EPR analysis of an independent preparation of the suspected adduct
 - The performance of appropriate controls is essential