Hyperfine coupling constant

- Hyperfine interaction usually results in splitting of lines in an ESR spectrum.
- The interaction energy between the electron spin and a magnetic nucleus is characterized by the hyperfine coupling constant
- This is represented by
 - A with units of energy (Joule)
 - a with unit of Magnetic Field (Gauss, Tesla)

- The example of a system having S= ½ and I= 3/2 is the methyl radical in which the unpaired electron interacts with three protons.
- There will be four values of M_l corresponding to $M_S = +\frac{1}{2}$ and four values for $M_S = -\frac{1}{2}$.
- The resultant derivative spectrum will comprise of four lines with the intensity ratio 1:3:3:1.

Direct ESR analysis of a radical

- Radical cannot be diatomic
- Radical must be available at a detectable concentration
 - At least metastable
 - Frozen solution to greatly decrease radical decay
 Can greatly complicate the spectrum due to anisotropy
 - Continuous formation inside resonator
 - Enzymatic radical formation
 - Flow experiment
- · Radical characterized by hyperfine analysis