ALKANE FORMULA

•Four carbon/or hydogen atoms bonded to each carbon atom

• All C-C single bonds

•Ratio: C_nH_{2n+2}

NOTE: always an even number of hydrogen atoms in a hydrocarbon

•Alkane homologs : each member in a alkane series different from the next member by a CH₂ group

Sources of Alkanes

- · Major sources: Natural Gas and Petroleum
- Natural gas consists of about 90-95% methane, 5-10% ethane, and some propane, butane, and 2-methylpropane
- Petroleum is a thick, viscous liquid mixture of 1000's of compounds, most of them hydrocarbons, formed from the decomposition of marine plants and animals

Major Uses of Alkanes

- C₁-C₂: gases (natural gas)
- C₃-C₄: liquified petroleum (LPG)
- C₅-C₈: gasoline
- C₉-C₁₆: diesel, kerosene, jet fuel
- C₁₇-up: lubricating oils, heating oil
- Origin: petroleum refining

Physical Properties of Alkanes

- · Solubility
 - Alkanes are not soluble in water
 - They are soluble in each other
- · Reactions of Alkanes
 - The most important chemical property of alkanes is their inertness
 - They are quite unreactive toward any of the normal ionic reaction conditions.

Reactions of alkanes:
alkane + $H_2SO_4 \rightarrow$ no reaction (NR)
alkane + NaOH \rightarrow NR
alkane + Na → NR
alkane + $KMnO_4 \rightarrow NR$
alkane + H_2 ,Ni \rightarrow NR
alkane + $Br_2 \rightarrow NR$
alkane + $H_2O \rightarrow NR$
(Alkanes are typically non-reactive. They don't react with acids, bases, active metals, oxidizing agents, reducing agents, halogens, etc.)

Lower Membered Alkanes trivial (common) names

Condensed

- METHANE CH₄
- ETHANE CH₃CH₃
- PROPANE CH₃CH₂CH₃

	Nomeno	clature	9
CH_4	methane	C_7H_{16}	heptane
C_2H_6	ethane	C ₈ H ₁₈	octane
C ₃ H ₈	propane	C_9H_{20}	nonane
C_4H_{10}	butane	$C_{10}H_{22}$	decane
C_5H_{12}	pentane	$C_{11}H_{24}$	undecane
C ₆ H ₁₄	hexane	$C_{12}H_{26}$	dodecane
C ₁₃ H ₂₈	tridecane	$C_{14}H_{30}$	tetradecane
$C_{20}H_{42}$	icosane	$C_{100}H_{202}$	hectane

<text><equation-block><equation-block>

"classes of carbons"

primary carbon (1°) – a carbon bonded to one carbon secondary carbon (2°) – a carbon bonded to two carbons tertiary carbon (3°) – a carbon bonded to three carbons quaternary carbon (4°) – a carbon bonded to four carbons

CH₂ CH3 CH₃CHCH₂CH₂CCH₃ 1º CH3 30 20

Conformers of Alkanes

- Structures resulting from the free rotation of a C-C single bond
- May differ in energy. The lowest-energy conformer is most prevalent.
- Molecules constantly rotate through all the possible conformations.

Cycloalkanes

- Rings of carbon atoms (CH₂ groups)
- Formula: C_nH_{2n}
- · Nonpolar, insoluble in water
- Compact shape
- Melting and boiling points similar to branched alkanes
 with same number of carbons

Cycloalkane Stability

- 5- and 6-membered rings most stable
- Bond angle closest to 109.5°
- Angle (Baeyer) strain
- Measured by heats of combustion per -CH₂ -

Heats of combustion/CH ₂	

$\textbf{Cyclane}~(CH_2)_n$	n	∆H/n (kJ)	
n-alkane		658.6	free of angle strain
cyclopropane	3	697.0	
cyclobutane	4	686.0	
cyclopentane	5	664.0	
cyclohexane	6	658.7	free of angle strain!!! Why?
cycloheptane	7	662.4	
cyclooctane	8	663.8	
cyclopentadecane	15	659.0	

Cyclohexane

- · Combustion data shows it's unstrained.
- Angles would be 120°, if planar.
- The chair conformer has 109.5° bond angles and all hydrogens are staggered.
- No angle strain and no torsional strain.

General Methods of Preparation of				
Alkanes				
(i) Deca	(i) Decarboxylation :			
(a) Deca	(a) Decarboxylation means removal of CO ₂ from molecules			
having -	having - COOH gp.			
(b) Satu	(b) Saturated monocarboxylic acid salt of sodium potassium on			
ary dist	liation with soda lime gives	s aikane.		
	RCOONa	-CO2	R-H	
or	RCOONa + NaOH	CeD	R-H + Na ₂ CO ₃	
 (c) The alkane formed always contains one carbon atom less than the original acid. (d) The yield is good in case of lower members but poor for higher members. 				

(e) Soda lime is prepared by soaking quick lime CaO in caustic soda solution and then drying the products. It is generally written as NaOH + CaO. Its reaction is milder than caustic soda. Otherwise the reaction will occur violently. Also CaO used alongwith NaOH keeps it dry (NaOH is hygroscopic) to aid fusion. (f) The decarboxylation of sodium formate yields H₂. HCOONa + NaOH $\stackrel{\text{cee}}{\longrightarrow}$ H₂ + Na₂CO₃ CH₃COONa + NaOH $\stackrel{\text{cee}}{\longrightarrow}$ CH₄ + Na₂CO₃

(ii) Wurtz reaction: (a) A solution of alkyl halide in ether on	heating with	n sodium gives alkane.
R-X + 2Na + X-R	ether	R-R + 2NaX
(b) An alkyl halide on Wurtz reaction leads to the formation of symmetrical alkane having an even number of carbon atoms.		
(c) Two different alkyl halides, on Wurtz	reaction giv	ve all possible alkanes.
$CH_3X + Na + C_2H_5X \rightarrow CH_3CH_2C$	CH ₃ + CH ₃	$CH_3 + CH_3CH_2CH_2CH_3$
The different steps are: CH ₃ X + 2Na + C ₂ H ₅ λ	$C \to CH_3C$	CH ₂ CH ₃ + 2NaX
CH ₃ X + 2Na + C ₂ H ₅)	K→CH ₃ C	H ₃ + 2NaX
C ₂ H ₅ X + 2Na + C ₂ H ₅	$X \rightarrow C_2 H_1$	₅ C ₂ H ₅ + 2NaX

2. Reduction of an alkyl halide
a) hydrolysis of a Grignard reagent (two steps)
i) R—X + Mg \rightarrow RMgX (Grignard reagent)
ii) RMgX + $H_2O \rightarrow RH + Mg(OH)X$
SB SA WA WB
$\begin{array}{rcl} \mathrm{CH_3CH_2CH_2\text{-}Br} &+ & \mathrm{Mg} & \rightarrow & \mathrm{CH_3CH_2CH_2\text{-}MgBr} \\ \textit{n-propyl bromide} & & n$-propyl magnesium bromide} \end{array}$
$CH_3CH_2CH_2-MgBr + H_2O \rightarrow CH_3CH_2CH_3 + Mg(OH)Br$ propane
1 1 1

b) with an active metal and an acid
$R-X + metal/acid \rightarrow RH$
active metals = Sn, Zn, Fe, etc.
acid = HCl, etc. (H^+)
$\begin{array}{rcl} \mathrm{CH_3CH_2CHCH_3} &+& \mathrm{Sn/HCl} \rightarrow &\mathrm{CH_3CH_2CH_2CH_3} &+& \mathrm{SnCl_2}\\ && & \\ \mathrm{Cl} && & \\ sec\text{-butyl chloride} && & n\text{-butane} \end{array}$
$\begin{array}{rrrr} CH_3 & CH_3 \\ CH_3CCH_3 &+& Zn/H^+ \rightarrow & CH_3CHCH_3 &+& ZnBr_2 \\ Br & & & \end{array}$
tert-butyl bromide isobutane

Kolbe electrolysis or Kolbe reaction

The Kolbe reaction is formally a **decarboxylative dimerisation** and proceeds by a radical reaction mechanism. Generally, the reaction can be observed as:

 $R^1COO- + R^2COO- \rightarrow R^1-R^2 + 2CO_2$

If R^1 , R^2 are different, then alkanes R^1 - R^1 and R^2 - R^2 are also formed.

As an example, electrolysis of acetic acid yields ethane and carbon dioxide:

 $\mathsf{CH}_3\mathsf{COOH}\to\mathsf{CH}_3\mathsf{COO-}\to\mathsf{CH}_3\mathsf{COO}{\boldsymbol{\cdot}}\to\mathsf{CH}_3{\boldsymbol{\cdot}}+\mathsf{CO}_2$

 $2CH_3 \cdot \rightarrow CH_3CH_3$

Alkane, reactions:

- Halogenation
- Combustion (oxidation)
- Pyrolysis (cracking)

Halogenation
 R-H + X₂, heat or hv → R-X + HX
 a) heat or light required for reaction.
 b) X₂: Cl₂ > Br₂ ≠ I₂
 c) yields mixtures ⁽²⁾
 d) H: 3° > 2° > 1° > CH₄
 e) bromine is more selective

Inhibitors

 $CH_3 \cdot + O_2 \longrightarrow CH_3 - O - O \cdot$

a "peroxy" radical

A compound which slows down or stops a reaction, even when present in small quantities, is called an inhibitor.

2. Combustion $C_{n}H_{2n+2} + (xs) O_{2}, \text{flame} \Rightarrow n CO_{2} + (n+1) H_{2}O + \text{heat}$ gasoline, diesel, heating oil... Oxidation of hydrocarbons is the basis for their uses as energy sources for heat and power $CH_{4} + 2O_{2} \longrightarrow CO_{2} + 2H_{2}O + 212 \text{ kcal/mol}$ $CH_{3}CH_{2}CH_{3}+5O_{2} \longrightarrow 3CO_{2}+4H_{2}O + 530 \text{ kcal/mol}$

